Computing representation matrices for the action of Frobenius on cohomology groups

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing representation matrices for the action of Frobenius to cohomology groups

This paper is concerned with the computation of representation matrices for the action of Frobenius to the cohomology groups of algebraic varieties. Specifically we shall give an algorithm to compute the matrices for arbitrary algebraic varieties with defining equations over perfect fields of positive characteristic, and estimate its complexity. Moreover, we propose a specific efficient method,...

متن کامل

FROBENIUS ACTION ON l-ADIC ORBIFOLD COHOMOLOGY

We extend the definition of orbifold (Chen-Ruan) cohomology to tame Deligne-Mumford stacks over fields of positive characteristic and prove that a modified version of the Frobenius action preserves the product. We conjecture a relationship between the arithmetic information contained by this action and the zeta function of a crepant resolution of the coarse moduli space (when each exist).

متن کامل

Computing the cohomology groups

Let K be a field, and let T be ACFK , the theory of algebraically closed fields extending K. Then ACFK is strongly minimal, eliminates imaginaries, and has the property that every algebraically closed subset of the monster model is an elementary substructure (i.e., a model). Denote the monster by M. Let G be a connected algebraic group over K. Fix i ≥ 0, and a finite group M with order prime to...

متن کامل

FROBENIUS ACTION ON l-ADIC CHEN-RUAN COHOMOLOGY

We extend the definition of the Chen-Ruan cohomology ring to smooth, proper, tame, Deligne-Mumford stacks over fields of positive characteristic and prove that a modified version of the Frobenius action preserves the product.

متن کامل

PERRON-FROBENIUS THEORY ON THE NUMERICAL RANGE FOR SOME CLASSES OF REAL MATRICES

We give further results for Perron-Frobenius theory on the numericalrange of real matrices and some other results generalized from nonnegative matricesto real matrices. We indicate two techniques for establishing the main theorem ofPerron and Frobenius on the numerical range. In the rst method, we use acorresponding version of Wielandt's lemma. The second technique involves graphtheory.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Symbolic Computation

سال: 2020

ISSN: 0747-7171

DOI: 10.1016/j.jsc.2020.07.015